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Abstract-Much recent work has been devoted to the simulation of thermal regenerators, in particular, 
Cowper Stoves. A numerical step-by-step procedure to solve the differential equations describing the 
regenerative heat exchanger is set out. This uses the trapezoidal difference representation of the 
equations. This method has been programmed for a digital computer and a comparison made with 
another independent method of calculation. The two techniques yield identical solutions to the 
equations. It is necessary to decide upon the ~nimum number of steps in the space variable which 
require to be incorporated into the computer simulation for an accurate solution of the equations, 
especially in an analogue representation where step length cannot easily be altered. The factors 
governing the truncation errors are therefore discussed and it is shown that the larger the Hausen 

factor K/K,,, the fewer the steps necessary for accurate solution. 

NO~N~~~ 

A, regenerator heating surface area [ftz, 
cm21 ; 

n, b, c, constants defined by gas composition 

c 

D, 

h, 

4 

L, 
M, 
m, 

p, 
i-5 

& 

which are used in the expression relat- 
ing gas specific heat to temperature; 
specific heat of heat storing matrix 
[Btu/lb degF, Cal/g degC]; 
thermal diffusivity of chequerwork 

gas t~rn~rat~e [degF, degC!]; 
mean solid temperature [degF, degC]; 
flow rate of gas [lb/h, g/s]; 
distance from regenerator entrance 
Ift, cm1 ; 
Hausen ratio defining the extent of the 
non-linear temperature changes in the 
regenerator; 

[ftz/h, cmg/s]. 
overall heat-transfer coefficient IBtu/f@ 

Greek symbols 

_ h degF, cal/cmz s degC]; 
surface heat-transfer coefficient [Btu/f@ 
h degF, cal/cmz s degC]; 
length of regenerator [ft, cm]; 
mass of heat storing matrix [lb, g]; 
number of steps of integration in dis- 
tance direction; 

Y. parameter with dimensions of specific 
heat [Btu/lb degF, Cal/g degC]; 
dimensionless length; 
dimensionless time; 
time [h, s]; 

length of period [h, s]; 
number of steps of integration in 
time ; 
specific heat of gas [Btu/lb degF, Cal/g 
de&l ; ‘lREG, 
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thermal conductivity of chequerwork 
[Btu/ft h degF, Cal/cm s degC]; 
reduced length; 
reduced time; 
pseudo-thermal ratio at the end of the 
n-th cycle; 
thermal ratio (sometimes caIled thermal 
recovery); 
wall semi-thickness [ft, cm]; 
a correction applied to account for the 
inversion of the parabolic solid tem- 
perature profile at the regenerator 
reversals. 
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Subscripts 

h, i, hot inlet; 

c, 6 cold inlet; 
h, o,m, chronological mean hot outlet ; 
c, o, m, chronological mean cold outlet; 
c,o,f, final cold outlet; 
I’ 

C 

refers to position in y-direction; 
refers to position in time; 

0, refers to the regenerator entrance and 
to the beginning of a period ; 

m, refers to the regenerator exit; 

P, refers to the end of a period ; 

4, refers to surface of chequerwork. 

Superscripts 
I 
,: 

refers to heating period; 

, refers to cooling period. 

INTRODUCTION 

THE THERMAL regenerator consists of a heat 
storing matrix of solid material, often called 
“chequerwork”. Heat is transferred between the 
matrix and the fluid, usually a gas, which passes 
through the channels in the matrix. 

The cycle of operation consists of a heating 
period and a cooling period. In the heating 
period, heat is transferred to the chequerwork 
from the gas of specified entrance temperature 
and specified flow rate. At the end of the heating 
period, a reversal occurs at which the flow of 
hot gas is shut off. Then, during the cooling 
period, a gas of lower entrance temperature and 
specified flow rate passes through the channels 
of the chequerwork, in the opposite direction 
of flow to that in the heating period. Throughout 
the cooling period, heat is transferred from the 
chequerwork to the gas. The cooling period is 
concluded by another reversal and the next 
heating period commences. 

The differential equations used here to describe 
regenerator performance are based on the 
following assumptions : 

(i) the effect of the reversals can be neglected, 
that is the rapid gas temperature tran- 
sients which are associated with the 
residual gas in the regenerator being 
replaced by the gas flowing in the opposite 
direction at the reversal can be ignored. 

(ii) the entrance gas temperatures in both 
periods remain constant. 

(iii) the mass flow rates of the heating and 
cooling gases do not vary throughout each 
period. 

(iv) heat transfer between gas and solid can 
be represented in terms of an overall heat- 
transfer coefficient relating gas tempera- 
ture to mean solid temperature. Further 
the rate of heat transfer in the chequer- 
work at any height is represented by the 
time variation of the mean solid tempera- 
ture. This is discussed later. 

(v) the heat capacity of the gas in the 
channels of the matrix at any instant is 
small relative to the heat capacity of the 
chequerwork, and therefore can be 
neglected. 

(vi) the heat-transfer coefficients and the 
thermal properties of the heat storing 
mass and the gas do not vary throughout 
a period and are identical at all parts of 
the regenerator in that period. 

(vii) longitudinal thermal conductivity is neg- 
lected. 

Although these assumptions are not strictly 
true for the operation of many types of regenera- 
tor, the method of solving the differential 
equations described here can be extended to 
cover those features which might be included 
in a more sophisticated model of a regenerator. 

Several techniques have been developed to 
solve the hyperbolic differential equations 
describing the performance of the regenerative 
heat exchanger. Hausen [I, 21, Anzelius [3] and 
Nusselt [4] were early contributors in the 1930’s 
and lliffe [5] presented an alternative method of 
solution of the equations in 1948. 

There have been two different approaches to 
this problem. The first is called the closed type 
where the equations are solved directly for the 
thermal equilibrium conditions, that is when the 
solid temperature distribution in the matrix 
is identical at the end of successive cycles. 
Typical of this method is Hausen’s eigen- 
function method [l] and Nahavandi and Wein- 
stein’s Laplace transform method [lo]. 

The second method, of which the procedure 
described here is an example, is the simulation 
type, where in effect the mathematical model is 
cycled to equilibrium. This simulation type of 
approach can be further classified into two other 
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types. In Hausen’s heat pole method [2] and 
Iliffe’s Bessel function method [5], use is made of 
Green’s theorem in order to integrate chrono- 
logically, whereas in the method presented here 
and in the paper by Lambertson [ 111, numerical 
methods of integrating the differential equations 
are applied. 

The present paper therefore describes a 
numerical technique to solve the equations by an 
elementary step-by-step procedure. This method 
has been programmed for the Ferranti “Pegasus” 
computer. This programme is a simulation of 
the performance of the regenerator. 

The accuracy of the method has been checked 
against another independent method [5] for 
the solution of the differential equations based on 
the same assumptions. 

THE DIFFERENTIAL EQUATIONS 

The partial differential equations considered 
are of the hyperbolic type and are 

and 
-\ 

h/4(*-T)=MC$ 
The heat-transfer coefficient h relates gas and 

mean solid temperatures and is connected 
to the surface heat-transfer coefficient h by the 
relation 

and 

A = b+ = reduced length 

II = ki-: = reduced period 

h (r, - t) = & (T - t). where P = length of period F, s]. 

This has been discussed by Hausen [7], 
Willmott [6] and Butterfield [12]. It is useful to 
consider a generalized wall semi-thickness, d, 
of the chequerwork material around the channels 
in the regenerator matrix. A further relation 
between h and h can be obtained, namely 

BOUNDARY CONDITIONS 

where v is a correction applied to account for 
the inversion of the parabolic temperature 
profile in the walls of the matrix at the regenerator 
reversals. Hausen [7] has obtained an analytical 
relationship between p and the expression 

There are two boundary conditions. Firstly, 
the entrance gas temperatures in both heating 
and cooling periods are constant. Secondly, the 
solid temperatures at the end of a heating/cooling 
period are the same as those at the beginning 
of the succeeding cooling/heating period. In 
order to include the counterflow operation of 
the regenerator, i.e. that the gases flow in 
opposite directions in succeeding periods, this 
boundary condition is expressed as 

T’(O,y) = T(P,L -v) 

where the prime refers to the succeeding period. 
For the first cycle considered, T(0, y) is defined 
arbitrarily for 0 < y < L. 

for the “plain wall” case whilst Butterfield has 
computed by numerical methods the corre- 
sponding values of p as a function of the above 
expression for circular cylindrical and square 
cylindrical channelled regenerator matrices. 

The equations (1) and (2) can be simplified 
by introduction of the dimensionless parameters 

The equations (1) and (2) then become 

and 

“T=t-T 
87 (4) 

These parameters give rise to the dimensionless 
groups, called by Hausen [2], “reduzierte Lange” 
(reduced length) and “reduzierte Periodendauer” 
(reduced period). 

When y = L and 6’ = P, then 
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METHOD OF SOLUTION 

The methods of calculation such as those 
proposed by Hausen (the Warmepol Method) [2] 
and Iliffe (the Bessel Function Method) [5] 
were developed before the advent of digital 
computers. They were thus especially suitable 
for hand calculations using either a desk calcu- 
lating machine or a large slide rule together 
with books of tabulated functions. 

In the present method, which is particularly 
suitable for a digital computer programme, both 
equations are expressed in difference form, and 
integrated using the trapezoidal method. The 
resulting difference equations when solved yield 
the values of the gas and solid temperatures at 
equally spaced distances A,$ down the regener- 
ator, and at equally spaced intervals of time AT. 
This can be represented conveniently by the 
lattice as in Fig. 1. The suffixes r and S refer 
to distance and time respectively. 

r;E 

I 
r 

t 

A< 

i 
r-l 

S-l- A, -.s- AT-S+1 

FIG. 1. 

iEmploying the trapezoidal method, the differ- 
,ence’forms of equations (3) and (4) are 

tr+l*a = tr+s + :{ ($)r+,,, + ($)r,S} (5) 

and 

and 

c,= - (y(g)r,s+ ..* 
If $Af is denoted by a and +A7 by j3 and, further, 
the following general substitutions are made: 

= Tr,s - tr,s 

= tr,S - Tr,s, 

then it follows that equation (5) can be reduced 
to the form 

Similarly, equation (6) becomes 

Tf,s + <1+ p) 3 B(tr S+l + h,S). 

(8) 

THE INTEGRATION PROCEDURE 

In order to begin the integration, it is necessary 
to establish certain initial conditions. These are 
defined by the boundary conditions, namely 

(i) tO,S = constant for all S in the particular 
period. 

(ii) Tr,o is defined for all r arbitrarily at the 
beginning of the first cycle and then by the 
boundary condition T’(0, JJ) = T(P, L - y) 
at the beginning of the successive periods. 

At the beginning of a period, therefore, the 
initial solid temperatures T,.,o are known for all 
r=0,1,2 . . . . . m, (where mA[ = A) together 
with the inlet gas temperature to,o. The gas 
temperatures at the beginning of the period 
down the length of the regenerator are therefore 
calculated, using the difference equation (7), 

The truncation errors associated with these 
, difference representations are respectively 

cc = - (gyg)_+ *.* 

for r = 1,2, . . . . . m. 
This assumes that the disturbance to the 

system at the regenerator reversals can be ignored. 
The procedure now is to evaluate Tr.1 for 

r=O,l . . . . m and tr,l for r = 1,2 . . m, 
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given the values of Tr,o and tr,e for r = 0, 1 . . . . 
m and to,r, the constant inlet gas temperature. 

It is now convenient to rewrite equations (7) 
and (8) in the form 

G+l,S = Al tr,S + A2 (Tr+l,S + Tr,S) (74 

Tr,s+l = Bl Tr,s + B2 (tr,S+l + tr,S) (76) 

with 

l-u a 
Ai =Ifa, A2=l+a, 

B =1-p 
1- 

1 +B’ 

Equation (7b) involves prior knowledge of 
tr,s+l. But 

tr,S+l = A1 tr-l,s+l + A2 (Tr,s+l + Tr-l,s+l). 

The following form of the equation can thus be 
derived : 

T r,S+l = BI Tr,s + B2 {Al tr-l,s+l + 

A2 (Tr,s+l + Tu-I,S+I) + tr,s}. 

This becomes 

T 
B2 

r,&+l = (1 _Bi2 B;) Tr,s + (1Ax) trsS + 

A2B2 A1 B2 
(~-_~Bz) Tr-lps+l + (1 _ A2 B2) tr-l,s+l 

or 

Tr.s+l = Kl TZ,S + K2 tr,S + Ks Tr-l,s+l + 

K4 tr-l,s+l, (9) 
where 

Bl 
Kl=1-A2Bz’ 

B2 
K2=I-A2B2’ 

A2 B2 AI B2 ~_ 
K3 = 1 - A2 B2 ’ K4 =1 - A2B2’ 

It is now possible to evaluate Tl,l, that is 

7’1~ = Kl Tl,o + Kz tl,o + K3 To,1 + K4 to.1. 

From this, tl.1 can be calculated using equation 
(7a), namely 

tl,l = AI to,1 + A2 (TLI + To,d. 

This procedure is repeated continually up 
the whole length of the regenerator. In general 
terms, this can be represented diagrammatically 
as in Fig. 2. 

f+l 

f 

5 St1 

FIG. 2. 

At any stage of the integrating procedure, the 
values of T and t are known at the points 
indicated, namely (r, S), (r, S+l) and (r+l, S). 
Using equation (9) the value of T at (rf 1, S+ 1) 
is obtained explicitly. Then, using equation (7a) 
the value of t at (r+l, S+l) is also calculated 
explicitly. 

The integration is continued over the whole 
period, that is for S = 0, I,2 . . . . . . p where 
pA7 = II. At this stage the counterflow reversal 
condition, namely T”(0, y”) = T’(P, L - y”), 

is applied and integration over the succeeding 
period continues. 

One cycle of regenerator operation is comprised 
of one heating/cooling period followed by one 
cooling/heating period. Each period is defined 
by its reduced length A, its reduced period II and 
its constant inlet gas temperature to,s. 

After a large number of successive cycles, the 
solution of the difference equations becomes 
independent of the initial arbitrary solid tempera- 
tures. This state is known as “cyclic equilibrium”, 
and it is to this condition that the solution of the 
equations converges. It is this condition which 
was dealt with by Hausen and Iliffe in their 
treatments of the equations. 

When cyclic equilibrium is reached, the 
thermal ratio vnnc for both periods is calculated. 
These ratios are defined by expressions 

~'REG = 
th,i - th,o,m 

th,l - tc,i 
for the heating period 
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and specified small number, the (n + 1)th cycle is 

tc, 0, m -- tc, i regarded as the equilibrium cycle. 
~“REG = -~~~ ~~ for the cooling period. 

th,i - fc.i THE ACCURACY OF THE METHOD 

In order to calculate the time mean exit gas In order to assess the accuracy of the numerical 
temperatures, Gregory’s formula [8] is applied. procedure, a comparison is presented between 
That is results calculated by a computer programme 

I7 

time mean exit gas temperature = h 
s 

using the method, and those set out by Iliffe [5] 

tn2(7) d? in his paper. The effect of the truncation errors 
is considered later. In this comparison the 

0 
and is represented by availability of high speed computing enabled 

small step lengths in distance (At = 0.3 to 0.9) 
1 1 

+ 

P--l 

P 2 
tm,o + c tm,s +;tm,p - 

and small time steps (AT = 0.1 to 0.25) to be 

S-l 
taken without inconvenience. 

&w 1 Table 1. values of $mx = +'RRG 

m,?, - At,,o) - 24 (V%,, + A2tm,o) _4,jfl’f = r/p = 2 

- ;; (V3tm,, - A3tm,o)] 
Pz6 r’= 12 

A” 
Iliffe Willmott Iliffe Willmott 

where A and 0 are used here as the forward and 
backward differences respectively. 3 0.453 0.4531 0.249 0.2493 

Iliffe [5] demonstrated that when the water 
6 0.709 0.7086 0.487 0.4865 

12 0.865 0.8647 0.791 0.7901 
equivalent flow per period, WSP, is the same 18 - 0.9122 0.885 0.8854 
for both the hot entrance gas and the cold 
entrance gas, then The author questions Iliffe’s value of 0.791 

~'REG = ~"REG. 
for ?nno for /l’ = n’ = 24, II” = A” = 12. 

This condition is satisfied when II’/A’ = 
The computed value of 0.7901 was not affected 

Ii”‘/fl” where n’ and /I’ refer to the heating 
by reducing the already small step lengths A[ and 

period and II” and 11” refer to the cooling period. 
AT used for computing this value. 

Under these limiting conditions, it is often FURTHER CONSIDERATIONS OF THE 

convenient to determine whether dynamic INTEGRATION PROCEDURE 

equilibrium has been reached by comparing Upon differentiation of equation (3) with 
?‘nno and ~“nno at the end of each cycle. respect to 17 and equation (4) with respect to E, 

For the condition Ll’/A’ + Ii”‘/A”, it is con- and application of the equality i’t/bE = -ilT/L+, 
venient to compare ~‘nno (or ~“nno) at the end equations (3) and (4) become 
of successive cycles, in order to determine 
whether the simulation has converged to equi- 
librium. 

In the programme for the Ferranti “Pegasus” and 

computer, in order that the chronological mean 
exit gas temperatures need only be calculated 
for the equilibrium cycle, a pseudo-thermal ratio 
is calculated at the end of each cooling period. 

Any curve in the t -- 7 plane such that the 

This is defined by 
eauation 

is satisfied at each point will be a characteristic 
When Q(n) - @(n - 1) is less than a pre- of the pair of equations (10) and (11). Such 
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curves are in fact the straight lines parallel to the 
5 and 7 axes. The integration procedure along 
the .$ and 77 directions described in this paper is 
therefore a process of integration along the 
characteristics of the system of hyperbolic 
partial differential equations. This fact explains 
why the integration procedure is simple and 
explicit. As integration progresses in either the 
t or T direction, no estimation of the derivative 
in a direction across the direction of integration 
is required. 

When, however, the specific heat of the gas 
is considered to be a function of temperature, 
for example, the procedure becomes much more 
complicated. In effect one of the two sets of 
characteristics is no longer just parallel to the 
y-axis and its geometry has to be recalculated 
at each step of integration. A possible procedure 
is described in the Appendix to this paper. 

TRUNCATION ERRORS 

The effect of the truncation errors C, and C? 
is complex. The maximum values of At and AT 
permissible for convergence to a sufficiently 
accurate solution are functions of the values of 
Ii’ and A for both periods being considered. 

Under certain conditions, the variations of 
temperature with respect to both 4 and 71, are 
almost strictly linear and thus the value of the 
truncation errors C, and C,, will be negligibie, 
since the third order derivatives will be nearly 
zero. On the other hand, there are two conditions 
which give rise to non-linear variation of 
temperature with respect to [ and 7. These are: 

(i) decreasing values of reduced length Al and 
increasing values of reduced period l7. 

(ii) increasing values of the difference between 
the water equivalents per period of the gas 
flow in the two periods of the cycle. 

Under either or both of these two conditions, 
the non-linear variations of temperature will 
cause the value of the truncation errors C, and 
C,, to increase correspondingly. 

Condition (ii) is not one that is met to a 
serious degree in practice. However, the effect 
of non-linear variations of temperature due to 
condition (i) is a practical one. It has been 
described by Hausen [7] in terms of a factor 
K/KC, where 

and where 0 < K/K:0 < 1. 
The smaller the value of K/Ko, the greater 

the effect of both the non-linear variations of 
temperature and the corresponding truncation 
errors. It should be noted that implicit in this 
definition of K/K0 is that W’SP = W”S”P” 
since it is assumed that ~‘REG = n”n~o (see 
Iliffe [5], p. 367). 

In his paper Hausen [7] plots the value of 
K/K0 against the overall reduced length fly and 
the overall reduced period flT where these are 
taken to be the harmonic means of the values 
in the two periods, that is 

The present author has investigated the effect 
of K/K0 upon the truncation errors, with 
particular reference to the maximum permissible 
value of A[. For the purpose of discussion, the 
two integers m and p are defined again by 
m(A<) = (1 and p(A7) = IT. Further m’(Af) = 
A’, m”(An = /l”,p’(Av) = II’andp”(AT) = II”. 

ILLUSTRATION CALCULATIONS 

Case 1 
A thermally unsymmetric case has been 

considered with A’ = II’ = 6 and A” = IY’ = 
3.5 (K/K0 = 0.73). The computer simulation 
reached equilibrium in 7 cycles from the starting 
condition that the initial isothermal solid 
temperature was 500”. The hot inlet gas tem- 
perature was 1000” with the cold inlet gas 
temperature O0. In all cases p’ = 12, p” = 6. 

The exit gas temperature at the end of each 
period in the equilibrium cycle is set out below 
as calculated with different values of m (the 
same for each period). 

___- ---_ 
Final exit gas Final exit gas 
temperature temperature 

m 
(cooling period) (heating period) 

4 698.37 342.11 
8 694.29 344.64 

16 693.29 345.25 
31 693.04 34540 

_I_-. __.~.._ .---~ _ .--zzY. 



1298 A. J. WILLMOTT 

This suggests m should be about 12 for an 
accuracy of O-5 degrees in the final exit gas 
temperature. The harmonic mean reduced length 
is 4.421. 

Case 2 

/l’ = 13.7875 A” = 7.4916 

J7’ = 6.0265 JY’ = 3.2746 (K/K0 = 0.88) 

p’ = 24 P” = 12 

15 cycles to equilibrium 

-__I_ - 

Final exit gas Final exit gas 
temperature temperature 

tu 
(cooling period) (heating period) 

4 642.46 351.11 - 
8 643.80 358.23 

:1: 
644.14 358.18 
644.22 358.16 

w ____-_-_ --_- 

Thus for an accuracy of O-5 degrees, m should 
be about 18. The harmonic mean reduced length 
is 9.708. 

Case 3 

.A’ = 24.1702 A” = 11.2475 

II’ = 4.8556 1?” = 2.5537 (K/K0 = 0.93) 

p’ =24 p” = 12 

~-___ ~~--_-- _ -p= 

Final exit gas Final exit gas 
temperature temperature Cycles to 

I?1 equili- 
(cooling period) (heating period) brium 

4 705G4 129.90 42 
8 70460 128.04 44 

16 70446 128.21 45 

It might be expected that for an accuracy of 
05 degrees, m should be about 5. The harmonic 
mean reduced length is 15.3516. 

It seems evident from these results, as sum- 
marized below, that the number of steps m 
required for a sufficiently accurate representa- 
tion by the equations is not defined solely by the 

reduced length A as might be expected but more 
particularly by the ratio K/Ko. 
--- -_ - 

Reduced Hausen Number of steps for 0.5” 
length factor accuracy 

AT Irri& m 

_-~-- -_ ....____ -- 

4.421 0.13 12 
9.708 0.88 8 

15.352 0.93 5 

_._~_____ -I__-- --D:z_ _.._ 

It must be stressed that these calculations refer 
to the difference approximations described in 
this paper. Where the difference approximation 
is not as good then the number of steps for a 
required accuracy will increase. On the other 
hand, where a better approximation is employed, 
this number of steps will decrease. 

Employing this trapezoidal method of integra- 
tion, the minimum number of time and length 
steps required for the integration procedure to 
calculate the final exit gas temperature to an 
accuracy of 0.5” for the 0-1000” operating range 
has been estimated for a fixed reduced length 
A = 10, equal for periods of both heating and 
cooling, and for successive values of reduced 
period II, equal in both periods. These values of 
171 correspond to successively decreasing values 
of K/&. It has been found in this particular 
case that the required number of time steps and 
number of length steps are nearly equal. The 
minimum number of length steps, mmin, is 
tabulated below. 
Z -. __;.=_-- ~-. _II 

Reduced length n = 10 (-4’ = -4”) 
-- --.- 

Reduced Hausen Thermal 
period II ratio ratio lllmiu 

(IT’ = IT’) KIL ?REG 
-_- ~-- 

2 0.970 0.8290 4 
3-8 0,903 0.8186 6 
5 0,845 0.8087 8 

; 
0,794 07987 10 
0.738 0.7867 12 

7.8 0,692 O~YISI 14 
8.7 0.639 0.7617 16 
9‘4 0.598 0.7495 18 

~.____ 

It is interesting to note that Buker and Simcic 
[9] make reference to the fact that refined differ- 
ence approximations to the differential equations 
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are more important in the accurate representa- 
tion of stove performance than the introduction 
of refined thermal data to the model. In their 
digital computer representation of the equations, 
their value of m was 24. Such a high value can 
only be explained by the fact they considered a 
very wide range of flow rates for the stove and 
that the higher flow rates result in values of 
K/K0 as low as 0.75 with a large value for 
reduced length A. Further, non-linearities in the 
variation of temperature with respect to 4 and r], 
even at high values of K/Ko, may be introduced 
by the inclusion of a gas specific heat as a 
function of gas temperature in the equations. 
Such non-linearities would of course increase the 
truncation errors and increase the minimum 
number mmin required for accurate solution. 

THE EFFECT OF NON-LINEAR VARIATIONS OF 

TEMPERATURE UPON CLOSED METHODS OF 

SOLUTION OF THE EQUATIONS 

In the method presented by Nahavandi and 
Weinstein, the solid temperatures T’(t’) at the 
end of heating period are related by an integral 
equation to the unknown solid temperatures 
at the end of the cooling period Y’([“). Similarly 
the solid temperatures at the end of the cooling 
period are related to the unknown solid tempera- 
tures at the end of the heating period. It is then 
assumed that the unknown functions T’(f’) 
and T”([“) can be represented by power series 
expansions, 

."(t") z 2 bn ([")q~. 

n-0 

By considering truncated power series, up 
to power N, 2N + 2 simultaneous integral 
equations are solved for the coefficients aa, al, 
a2 . . . . ah7 and bo, 61, 62 . . . . blv. It is clear 
that the lower the value of Hausen K/KC, factor 
(and/or the greater the difference between 
W’S’P and W”S”P”), the more terms in the 
power series expansions that need to be con- 
sidered for accurate solution of the equations. 
This leads to the question of whether, for low 
values of K/Ko, the power series expansion is 
better replaced by a more rapidly convergent 
Chebyshev series, that is 

W’) = c Cn un (5’) 

T”(f”) = ; d,n U, (6”) 
II 

where U, (x) is defined by 

Ur (x) = cos (r cos-l x). 

In this case it is very probable that the system 
will be as accurately represented by a small 
number of simultaneous integral equations. 
Inspection of the analytical solution of equation 
(4) at the entrance to the regenerator, 

r(v) = T(0) e-e + t (1 - e-7). 

may suggest that a polynomial expansion might 
be better replaced by a series of exponentials 
for accurate solution of the equation by as few 
as possible simultaneous integral equations for 
low values of KIKo. 

CONCLUSIONS 

The trapezoidal method of difference repre- 
sentation has been applied to the hyperbolic 
differential equations describing the temperature 
behaviour of the thermal regenerator. This has 
led to a simple and rapid numerical step-by-step 
procedure to calculate the gas and mean solid 
temperatures in a regenerator at equal intervals 
of time at equally spaced heights in the regenera- 
tor. This method has been programmed for the 
Ferranti “Pegasus” computer and has been 
shown to yield the same solution to the equations 
for the same given conditions as a different and 
independent method of calculation, namely that 
of Iliffe [5]. 

It has been demonstrated that the Hausen 
factor K/K0 can be used to indicate the magnitude 
of the truncation errors associated with the 
difference representation for specified reduced 
lengths A’ and A” and reduced periods II’ and 
II”. The smaller the value of K/Ko, the more 
steps m and p, in the distance and time directions 
respectively, which are required for accurate 
solution of the equations. 

Finally, it is indicated in an appendix that 
the method can be extended to include the 
temperature dependence of the thermal pro- 
perties of the chequer material and the gases, 
and of the heat-transfer coefficients, together 
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with the time dependence of the flow rate and 
convective heat-transfer coefficients. 
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APPENDIX 

The numerical step-by-step procedure de- 
scribed here can be extended to include the time 
variation of the heat-transfer coefficients and 

mass flow rate of the gas and the temperature 
dependence of the thermal properties of the gas 
and the material of the chequerwork and of the 
heat-transfer coefhcients. To illustrate this, the 
temperature dependence of the gas specific heat 
will be considered. 

The specific heat of a gas can be expressed as 
a function of gas temperature of the form 

5’(t) z= n + bt + ~-2 

where 

S(t) = the specific heat of gas at temperature 
t [Btu/lb degF, Cal/g degC]; 

t = gas temperature (“F, “C) 

and a, b, c are constants determined by the gas 
composition. 

The differential equations become 

at ttA --- = w (a + bt + c+‘)-~ (T- t) i?v 

Set 

and 

It should be noted that y has dimensions of 
Btu/lb degF, Cal/g degC. Then the above 
equations become 

at T--t 

3Y a+bt+ci= 

and 
i?T 
--=t-T. 
377 

Expressing these equations in difference form, 
using the trapezoidal rule, we have 

and 
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Upon substituting the functions t and T for 
the several derivatives, the equations become 

Tr,s - tr,s -__ 
a + bt,,s + ct;;‘ 

+- 

and 

T r+l - tr+1,s __-. 
a + btr+l,s + tr;Y1, s 1 

1-B T __ r,s+l = 1 + fr,s + &tr,\+1 + tr,s) 

where, as previously, B = 4 Aq. 
In general, at any stage of the integration, the 

values of T and t will be known at the mesh 
points (r, S), (Y+ 1, S) and (r, S+ 1). It is necessary 
to calculate the values of T and t at (Y+ 1, S+ 1). 
It is known that 

tr+1,s+1 = tr,s+1 + - + 

at ( 1 ‘> (10) 
ar r,S+lJ 

involves Tr+l,s+l, not yet 

known. 
However, upon the substitution of 

Tr+l,stl 

into the term 

we obtain 

1-P 
l_tB 

Tr+~,s + 

&p (fr+1,s+1 + tr+l,S) 

+l $+l in the equation (lo), 
r ,L 

tr,.s+l - tr+~,s+l + 2 

B 1 

I+B 
__ trt1,s + c+p fr+l,S+1 I/ 
(a + b+l,s+l + ct,-,2,,,+,) + 
tr,s+l 

II 
(a + btr,s+l + 

This is a non-linear equation in t,+l,s+l which 
is written as 

g (tr+1,s+1> = 0. 

This can be solved by the Newton 
that is 

method, 

t k&+1) 
r+1* s-l-1 = Ql, s+1 - g (tryl, s+Jk w?l, s t1) 

where t:$,+, is the nth iterate of tr+l,s+l. 
Having evaluated tr+l,S+l in this manner, it 

follows that Tr+l,s+l is calculated explicitly 
using 

T 
1-P 

r+l,s+l = i--T BTr+~,s t 

f$ (tr+l,.s+l + tr+l,s). 

The repeated solution of a non-linear equation, 
g(t,.+l,s+l) = 0, at each stage of the integration 
may well render this method too time-consuming. 
The use of Newton’s method of solving non- 
linear equations to solve difference equations is 
not unknown, but it may be preferable to use a 
predictor-corrector method. 

An example of a predictor formula is 

tr+r,s+r = tr-l,s+l + 2Ay 

(mid-ordinate rule). 

Using this predicted value of tr+r,s+l, the 
derivative at (Y+ 1, S+ 1) is explicitly evaluated, 
and a corrected value of tr+l,s+r obtained using 
again the trapezoidal rule, i.e. 

AY at 
tr+1,s+1 = tr,s+1 + -2 li 1 ;- 

c’y r,S+l 
+ 

at i-1 i 
ay r+l,S+1j 

employing Tr,s+l to form the first estimate of 
(~tl$++1,s+1. 

Using this corrected value of I~+I,s+I, the 
derivative is re-evaluated at (r+l, S+l) and a 
new corrected value of tr+l,S+l obtained using 
the trapezoidal rule. This process is iterated until 
tr+l,s+l converges. 

Next, Tr+l,s+l must be computed using the 
equation 
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1-B 
T,.tl,s+l = Ii-7 Tr+l,s + 

The solution of the non-linear equation g = 0 
by Newton’s method and the application of a 

$&j (tr,Ls + tr+l,S+l)* 
predictor-corrector procedure both involve itera- 
tions. Future work may show that a combination 

This next new value of Tr+r,s+r is used to re- 
of these methods will minimize the necessary 

at 

i 1 

computation and as a beginning it is suggested 

estimate - and the procedure is iter- that the value of &+l,s+r predicted by the mid- 
ay r+l,S--L ordinate formula can be used as the first estimate 

ated to convergence. in Newton’s iteration procedure. 

Racy-~aucoup de travaux &cents ont et6 consacres a Ia simulation des recuperateurs de chaleur, en 
particulier, des fourneaux Cowper. Un pro&de numerique pas-a-pas de resolution des equations 
differentielles decrivant I’echangeur de chaleur par recuperation est mis en route. Celui-ci utilise la 
representation des equations par des differences trapezoldales. Cette methode a BtC programmee pour 
un calculateur numerique et une comparaison a ete faite avec une autre methode independante du caicul. 
Les deux techniques fournissent des solutions identiques des equations. II est necessaire de d&aider du 
nombre minimal de pas dans la variable spatiale que i’on a hesoin d’incorporer dans Ia simulation par 
Ie calcuiateur afin d’avoir une solution precise des equations, s~cialement dans une representation 
analogique oh la longueur du pas ne peut pas dtre facilement modifiee. Les facteurs gouvernant ies 
erreurs de troncature sont done discutees et on montre que plus le facteur de Hausen K/K0 est grand, 

plus le nombre de pas necessaires pour une solution precise est faible. 

Zusammenfassung-Die Simulation thermischer Regeneratoren, insbesondere von Cowper-tifen, 
wurde in letzter Zeit eingehend bearbeitet. Ein numerisches Schrittverfahren wurde zur Losung der 
Differentialgieichungen der regenerativen W~rme~bertrager aufgestellt. Es benutzt die trapezfijrmige 
Differen~stellung der GIeichungen. Diese Methode wurde fiir eine ~igitalr~henmaschine pro- 
grammiert und es wurde eine Vergieichsrechnung nach einer anderen, unabhlngigen Methode 
durchgefiihrt. Die beiden Rechenarten ergeben identische Liisungen der Gleichungen. Es ist erforderlich, 
iiber die minimale Anzahl der Schritte fur die Raumvariable zu entscheiden, da diese fur die genaue Lo- 
sung der Gleichungen in die Simulation durch die Rechenmaschine aufgenommen werden muss und 
speziell bei Analogdarstellung die Schrittlange nur schwer gelndert werden kann. Die Faktoren, 
welche die Fehler durch Verkleinerung der Schrittzahl bestimmen, werden deshalb diskutiert und es 
wird gezeigt, dass fiir die Losung umso weniger Schritte niitig sind, je grosser der Hausenfaktor 

~HHuT~~~l3I-~~l~u~ll~ Ii:: Ht?;laBIIO oIIy6JInKoBalIHbIx paGOT nOCWIlm?IlLI MO;IWIIIpOnalIIIIO Ten- 
JIoabIx pererrepaTopoa, B WICTH~CTR, KaynepcKKx neqeti. PaapaBoTaII sIrc;IerrrIbIti MeTox 
nocne~oaaTenbIIbIx npnFin~merr14li :I~?R perueamf ;IH~~epeIIuBa;IbHbIx ypamrermti, onucI+ 
I3aIomnX pereHepaTIfBHb& Ti%lOO~MeHHZIK. PI 3TOM MeTO;le llCnOJIb:Q%TCn TpaiIeLIOtf~anbIIOt’ 
pa3HOCTHOe IIpefiCTaBseHHr ypaBHeHIi&t. MeTox itbiJI ~~auporpa~f~ponaI~ ;TSH qrr~~ponoii 
B~~iC~~I~T~~bl~O~ MaIll~~IIbI, II 6bIjIO npone~eHl~ CpaBHeHHe C ~pyP~1~ FIe:~aB~C~ML~~ W?ToJIa 
paC?IGTa. f~eOliXO;gIiMO pemMTb BOlIpOC 0 ~~IH~i~~a~b~iO~ WZCJK? IUWOB II0 npO~Tp~~iCTBeHH0~ 
IIept?MelI~IOt”r, KOTOpbIe CJIeayeT CICnOJIL3OBaTL IIpIS MOJIWIupOBaHHu 33bIYIICJIllTeJIbIIO~f MaIIIllIIO~ 
AZI?R TOYHOI’O pWI?IIIIR ypaBHeHKi8, KOI’na $‘IHIIy I.IIara HI?JIb3R JIWKO IIHMeIIHTb. iio3ToMy pac- 
cMaTpKaa,oTCn IiO3@@IIKeIITbI, JWiTbIBaIomne 0111~61in BCJIeRCTBne oT6paCbIBaHHSI YneHOB. 
ffOKa3aHO~ 9TO ‘IP\, 6OJIbIIIC KO3@&IuIIeIIT XO%?Ha K/J%, TeM YeIIbIIIe IIyNHO IIIRrOE &WI 


