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Abstract—Much recent work has been devoted to the simulation of thermal regenerators, in particular,
Cowper Stoves. A numerical step-by-step procedure to solve the differential equations describing the
regenerative heat exchanger is set out. This uses the trapezoidal difference representation of the
equations. This method has been programmed for a digital computer and a comparison made with
another independent method of calculation. The two techniques vield identical solutions to the
equations. It is necessary to decide upon the minimum number of steps in the space variable which
require to be incorporated into the computer simulation for an accurate solution of the equations,
especially in an analogue representation where step length cannot easily be altered. The factors
governing the truncation errors are therefore discussed and it is shown that the larger the Hausen

factor K/K,, the fewer the steps necessary for accurate solution.

NOMENCLATURE

regenerator heating surface area [ft2,
cm?];

a, b, c, constants defined by gas composition
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which are used in the expression relat-
ing gas specific heat to temperature;
specific heat of heat storing matrix
[Btu/Ib degF, cal/g degCl;

thermal diffusivity of chequerwork
[ft2/h, cm?/s].

overall heat-transfer coefficient [Btu/ft2
h degF, cal/em? s degCl;

surface heat-transfer coefficient [Btu/ft?
h degF, calfcm? s degCl;

length of regenerator [ft, cmj];

mass of heat storing matrix [lb, g];
number of steps of integration in dis-
tance direction;

length of period [h, s};

number of steps of integration in
time;

specific heat of gas [Btu/lb degF, cal/g
degCl;
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gas temperature [degF, degC];

mean solid temperature [degF, degCl;
flow rate of gas [Ib/h, g/s];

distance from regenerator entrance
[ft, cm];

Hausen ratio defining the extent of the
non-linear temperature changes in the
regenerator;
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parameter with dimensions of specific
heat [Btu/lb degF, cal/g degC]l;
dimensionless length;

dimensionless time;

time [h, s};

thermal conductivity of chequerwork
[Btu/ft h degF, cal/cm s degC];

reduced length;

reduced time;

pseudo-thermal ratio at the end of the
n-th cycle;

thermal ratio (sometimes called thermal
recovery);

wall semi-thickness [ft, cm];

a correction applied to account for the
inversion of the parabolic solid tem-
perature profile at the regenerator
reversals.
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Subscripts
h,i, hot inlet;
c,i, coldinlet;

h,o0,m,chronological mean hot outlet;
¢,0,m, chronological mean cold outlet;

¢,0,f, final cold outlet;

r, refers to position in y-direction;

S, refers to position in time;

0, refers to the regenerator entrance and

to the beginning of a period;
m, refers to the regenerator exit;

J2 refers to the end of a period;

q, refers to surface of chequerwork.
Superscripts

’, refers to heating period;

1

, refers to cooling period.

INTRODUCTION
THE THERMAL regenerator consists of a heat
storing matrix of solid material, often called
“chequerwork”. Heat is transferred between the
matrix and the fluid, usually a gas, which passes
through the channels in the matrix.

The cycle of operation consists of a heating
period and a cooling period. In the heating
period, heat is transferred to the chequerwork
from the gas of specified entrance temperature
and specified flow rate. At the end of the heating
period, a reversal occurs at which the flow of
hot gas is shut off. Then, during the cooling
period, a gas of lower entrance temperature and
specified flow rate passes through the channels
of the chequerwork, in the opposite direction
of flow to that in the heating period. Throughout
the cooling period, heat is transferred from the
chequerwork to the gas. The cooling period is
concluded by another reversal and the next
heating period commences.

The differential equations used here to describe
regenerator performance are based on the
following assumptions:

(i) the effect of the reversals can be neglected,
that is the rapid gas temperature tran-
sients which are associated with the
residual gas in the regenerator being
replaced by the gas flowing in the opposite
direction at the reversal can be ignored.

(ii) the entrance gas temperatures in both
periods remain constant.
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(iii) the mass flow rates of the heating and
cooling gases do not vary throughout each
period.

(iv) heat transfer between gas and solid can
be represented in terms of an overall heat-
transfer coefficient relating gas tempera-
ture to mean solid temperature. Further
the rate of heat transfer in the chequer-
work at any height is represented by the
time variation of the mean solid tempera-
ture. This is discussed later.

(v) the heat capacity of the gas in the
channels of the matrix at any instant is
small relative to the heat capacity of the
chequerwork, and therefore can be
neglected.

(vi) the heat-transfer coefficients and the
thermal properties of the heat storing
mass and the gas do not vary throughout
a period and are identical at all parts of
the regenerator in that period.

(vii) longitudinal thermal conductivity is neg-
lected.

Although these assumptions are not strictly
true for the operation of many types of regenera-
tor, the method of solving the differential
equations described here can be extended to
cover those features which might be included
in a more sophisticated model of a regenerator.

Several techniques have been developed to
solve the hyperbolic differential equations
describing the performance of the regenerative
heat exchanger. Hausen [1, 2], Anzelius [3] and
Nusselt [4] were early contributors in the 1930°s
and lliffe [5] presented an alternative method of
solution of the equations in 1948.

There have been two different approaches to
this problem. The first is called the closed type
where the equations are solved directly for the
thermal equilibrium conditions, that is when the
solid temperature distribution in the matrix
is identical at the end of successive cycles.
Typical of this method is Hausen’s eigen-
function method [1] and Nahavandi and Wein-
stein’s Laplace transform method [10].

The second method, of which the procedure
described here is an example, is the simulation
type, where in effect the mathematical model is
cycled to equilibrium. This simulation type of
approach can be further classified into two other
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types. In Hausen’s heat pole method [2] and
Hiffe’s Bessel function method [5], use is made of
Green’s theorem in order to integrate chrono-
logically, whereas in the method presented here
and in the paper by Lambertson [11], numerical
methods of integrating the differential equations
are applied.

The present paper therefore describes a
numerical technique to solve the equations by an
elementary step-by-step procedure. This method
has been programmed for the Ferranti ““Pegasus”
computer. This programme is a simulation of
the performance of the regenerator.

The accuracy of the method has been checked
against another independent method [5] for
the solution of the differential equations based on
the same assumptions.

THE DIFFERENTIAL EQUATIONS

The partial differential equations considered
are of the hyperbolic type and are

hA(T WSL o 1
(T —1) = B (D
and
B T
FAG—T) = MCS, @)
o8
The heat-transfer coefficient / relates gas and
mean solid temperatures and is connected
to the surface heat-transfer coefficient # by the

relation
h(Tqg —t)=h(T —1).

This has been discussed by Hausen [7],
Willmott [6] and Butterfield {12]. It is useful to
consider a generalized wall semi-thickness, 4,
of the chequerwork material around the channels
in the regenerator matrix. A further relation
between /4 and / can be obtained, namely

1 1 4

PR
where ¢ is a correction applied to account for
the inversion of the parabolic temperature
profile in the walls of the matrix at the regenerator
reversals. Hausen [7] has obtained an analytical
relationship between ¢ and the expression

D42 /1 1
6 (ﬁ'> P

1293

for the “plain wall” case whilst Butterfield has
computed by numerical methods the corre-
sponding values of ¢ as a function of the above
expression for circular cylindrical and square
cylindrical channelled regenerator matrices.

The equations (1) and (2) can be simplified
by introduction of the dimensionless parameters

hA hA
& = 7W*SLy and 7 = e 0.

The equations (1) and (2) then become

ot

and
oT

These parameters give rise to the dimensionless
groups, called by Hausen [2], “reduzierte Linge”
(reduced length) and ““reduzierte Periodendauer”
(reduced period).

When y = L and 6 = P, then

hA
A= WS = reduced length
and
hAP .
Il = MC reduced period

where P = length of period [h, s].

BOUNDARY CONDITIONS

There are two boundary conditions. Firstly,
the entrance gas temperatures in both heating
and cooling periods are constant. Secondly, the
solid temperatures at the end of a heating/cooling
period are the same as those at the beginning
of the succeeding cooling/heating period. In
order to include the counterflow operation of
the regenerator, i.e. that the gases flow in
opposite directions in succeeding periods, this
boundary condition is expressed as

TI(09y):T(P’L—"y)

where the prime refers to the succeeding period.
For the first cycle considered, 7(0, y) is defined
arbitrarily for 0 < y < L.
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METHOD OF SOLUTION

The methods of calculation such as those
proposed by Hausen (the Warmepol Method) [2]
and lNiffe (the Bessel Function Method) [5]
were developed before the advent of digital
computers. They were thus especially suitable
for hand calculations using either a desk calcu-
lating machine or a large slide rule together
with books of tabulated functions.

In the present method, which is particularly
suitable for a digital computer programme, both
equations are expressed in difference form, and
integrated using the trapezoidal method. The
resulting difference equations when solved yield
the values of the gas and solid temperatures at
equally spaced distances A¢ down the regener-
ator, and at equally spaced intervals of time Ax.
This can be represented conveniently by the
lattice as in Fig. 1. The suffixes » and S refer
to distance and time respectively.

11
r
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"Employing the trapezoidal method, the differ-
cence forms of equations (3) and (4) are

ens =t () o (o) 0

and

er or
Trse1=Trs + 75 {(8n)r,s+1 t (5’_7)1',3} ©

The truncation errors associated with these
. difference representations are respectively

AE\3 (03¢
6= (52) (38)..e*
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and

An\3 (3T
Cr=- (ﬁ) (3_n§)r,s

If 1A is denoted by a and A~ by 8 and, further,
the following general substitutions are made:

ot _r
98,5 r,s — lr,s

oT
8— =tr,s — Tr,S,
n/r,S

then it follows that equation (5) can be reduced
to the form

1
tr+1,S=(1+ )trs+(1+ )(Tr+1s+Trs)

(7
Similarly, equation (6) becomes
Ty 541 = (1 T g) Trs + = a _ﬁ:_ B)(tr S+1 -+ br,s).
®

THE INTEGRATION PROCEDURE
In order to begin the integration, it is necessary
to establish certain initial conditions. These are
defined by the boundary conditions, namely

(i) to,s = constant for all S in the particular
period.

(ii) Tr,0 is defined for all r arbitrarily at the
beginning of the first cycle and then by the
boundary condition T'(0, y) = T(P,L — y)
at the beginning of the successive periods.

At the beginning of a period, therefore, the

initial solid temperatures 7y o are known for all
r=0,1,2..... m, (where mA§ = A) together
with the inlet gas temperature fo,0. The gas
temperatures at the beginning of the period
down the length of the regenerator are therefore
calculated, using the difference equation (7),

1
tr+1,0=(1+ )tr0+(1+ )(Tr+10+Tro)

forr=1,2,
This assumes that the disturbance to the
system at the regenerator reversals can be i gnored.
The procedure now is to evaluate 7y,1 for
r=0,1....m and ¢#,; for r=1,2...m,
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given the values of Ty o and tr o forr =0,1 ....
m and #p,1, the constant inlet gas temperature.

It is now convenient to rewrite equations (7)
and (8) in the form

tri1,s = A1 tr,s + A2 (Tr+1,5s + Tr,5) (72)

Tr,s+1 = B1 Ty,s + Bo (tr,5+1 + tr,5) (7b)
with
A _l—a A . a
l—m’ 2_—1+a’
1 —p B
By =—, By = ———.
YTT14p *T1+8

Equation (7b) involves prior knowledge of
tr,s+1. But

tr,s+1 = A1 tr—1,541 -+ A2 (Tr, 541 + Tr-1,5+1)-

The following form of the equation can thus be
derived:
Ty,s41 = B1 Tr,s + Ba {A1tr-1,5+1 +
Az (Ty,s+1 + Tr-1,5+1) + tr,5}.
This becomes

Tysot = Dt B,
r,$+1—(1_AzB) rS+( AB)rS+
Az Bo A1 B2
T — A B)Tr -1,5+1 +(~——mtr—1,s+l
or
Tr.sn1 =K1 Trs + Ke tr,5s + K3 Tr-1,5+1 +
Kitr-1,541, (9
where
B Bo
K=t—gs P~ 1"4m
Ag Be A1 Ba
B=1—"45 M 145

1t is now possible to evaluate 77,1, that is
Tyg =K1 Ti,0+ K2 t1,0 + K3 To,1 + Kafo,1.

From this, 71,1 can be calculated using equation
(7a), namely

t1,1 = A1 to,1 + A2 (Th,1 + To,1).
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This procedure is repeated continually up
the whole length of the regenerator. In general
terms, this can be represented diagrammatically
as in Fig. 2.

]

r+l

5%
1%
+

FiG. 2.

At any stage of the integrating procedure, the
values of 7 and ¢ are known at the points
indicated, namely (r, S), (r, S+1) and (r+1, S).
Using equation (9) the value of T at (r+4-1, S+1)
is obtained explicitly. Then, using equation (7a)
the value of ¢ at (r+1, S+1) is also calculated

explicitly.
The integration is continued over the whole
period, that is for S =0,1,2...... p where

pAn = II. At this stage the counterflow reversal
condition, namely 77(0, y'') = T'(P, L — y''),
is applied and integration over the succeeding
period continues.

One cycle of regenerator operation is comprised
of one heating/cooling period followed by one
cooling/heating period. Each period is defined
by its reduced length A, its reduced period IT and
its constant inlet gas temperature fo,s.

After a large number of successive cycles, the
solution of the difference equations becomes
independent of the initial arbitrary solid tempera-
tures. This state is known as “cyclic equilibrium”’,
and it is to this condition that the solution of the
equations converges. It is this condition which
was dealt with by Hausen and lliffe in their
treatments of the equations.

When cyclic equilibrium is reached, the
thermal ratio nrgg for both periods is calculated.
These ratios are defined by expressions
thi — th,o,m

for the heating period
thyi — le,t

7'REG =
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and

t _
feoom = ot ! for the cooling period.

REG
" tz_fcz

In order to calculate the time mean exit gas
temperatures, Gregory’s formula [8] is applied.
That is

I7

. . 1

time mean exit gas temperature = J tm(n) dn
0

and is represented by

l[lt +ZT -’rﬂt
p2m0 SfImS m,p

1
D (Vtm,p — Atm,0) — 2% (V2tm,p + A2, 0)

720 (V tm /R Astm’()):l

where A and V are used here as the forward and
backward differences respectively.

Tliffe [5] demonstrated that when the water
equivalent flow per period, WSP, is the same
for both the hot entrance gas and the cold
entrance gas, then

7'REG = 7' REG-

This condition is satisfied when II'/A’ =
IT"/A” where II" and A’ refer to the heating
period and 17" and A" refer to the cooling period.
Under these limiting conditions, it is often
convenient to determine whether dynamic
equilibrium has been reached by comparing
n'rEc and ' 'ruc at the end of each cycle.

For the condition II'/A" = IT"”[A”, it is con-
venient to compare n'rEG (or 7' 'rec) at the end
of successive cycles, in order to determine
whether the simulation has converged to equi-
librium.

In the programme for the Ferranti “Pegasus™
computer, in order that the chronological mean
exit gas temperatures need only be calculated
for the equilibrium cycle, a pseudo-thermal ratio
is calculated at the end of each cooling period.
This is defined by

P(n) =

When &(n) — d(n — 1) is less than a pre-
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specified small number, the (n 4+ 1)th cycle is
regarded as the equilibrium cycle.

THE ACCURACY OF THE METHOD

In order to assess the accuracy of the numerical
procedure, a comparison is presented between
results calculated by a computer programme
using the method, and those set out by Iliffe [5]
in his paper. The effect of the truncation errors
is considered later. In this comparison the
availability of high speed computing enabled
small step lengths in distance (A¢ = 0-3 to 0-9)
and small time steps (Anp = 0-1 to 0-25) to be
taken without inconvenience.

Table 1. Values of v'rEc = 7" 'rEG
A = I — 2
m =6 =12
w
Iliffe Willmott 1liffe Willmott
3 0453 04531 0249 02493
6 0709 07086 0487 04865
12 0865 08647 0791 07901
18 — 09122 0885  0-8854

The author questions Iliffe’s value of 0-791
for mrue for A" =1IT"=24, II" = A" = 12.
The computed value of 0-7901 was not affected
by reducing the already small step lengths A€ and
Az used for computing this value.

FURTHER CONSIDERATIONS OF THE
INTEGRATION PROCEDURE
Upon differentiation of equation (3) with
respect to » and equation (4) with respect to &,
and application of the equality ¢t/c§ = —dT/om,
equations (3) and (4) become

o2t or ot 0 10
55‘87] + 875 + 677} - ( )
and
2T ol oT
-— =0 an

cgin T ae

Any curve in the £ — » plane such that the
equation

d_, d¢

de =" " a4y

is satisfied at each point will be a characteristic

of the pair of equations (10) and (11). Such

=0
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curves are in fact the straight lines parallel to the
¢ and 7 axes. The integration procedure along
the £ and 7 directions described in this paper is
therefore a process of integration along the
characteristics of the system of hyperbolic
partial differential equations. This fact explains
why the integration procedure is simple and
explicit. As integration progresses in either the
£ or 5 direction, no estimation of the derivative
in a direction across the direction of integration
1s required.

When, however, the specific heat of the gas
is considered to be a function of temperature,
for example, the procedure becomes much more
complicated. In effect one of the two sets of
characteristics is no longer just parallel to the
y-axis and its geometry has to be recalculated
at each step of integration. A possible procedure
is described in the Appendix to this paper.

TRUNCATION ERRORS

The effect of the truncation errors C, and C,
is complex. The maximum values of A¢ and Ay
permissible for convergence to a sufficiently
accurate solution are functions of the values of
IT and A for both periods being considered.

Under certain conditions, the variations of
temperature with respect to both £ and % are
almost strictly linear and thus the value of the
truncation errors C; and. C, will be negligible,
since the third order derivatives will be nearly
zero. On the other hand, there are two conditions
which give rise to non-linear variation of
temperature with respect to £ and ». These are:

(i) decreasing values of reduced length /1 and
increasing values of reduced period I7.

(ii) increasing values of the difference between
the water equivalents per period of the gas
flow in the two periods of the cycle.

Under either or both of these two conditions,
the non-linear variations of temperature will
cause the value of the truncation errors C, and
C, to increase correspondingly.

Condition (ii) is not one that is met to a
serious degree in practice. However, the effect
of non-linear variations of temperature due to
condition (i) is a practical one. It has been
described by Hausen [7] in terms of a factor
K/Ko where
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K _ _mee (}_‘ n L)
Ko 1—mmre\d’ A"

and where 0 << K/Kp < 1.

The smaller the value of K/Ky, the greater
the effect of both the non-linear variations of
temperature and the corresponding truncation
errors. It should be noted that implicit in this
definition of K/Ky is that W'S'P' = W"'S"P”
since it is assumed that »'reg = % 'rEc (sc€
Tliffe [5], p. 367).

In his paper Hausen [7] plots the value of
K/Ky against the overall reduced length /A7 and
the overall reduced period II7 where these are
taken to be the harmonic means of the values
in the fwo periods, that is

i 1/1 i 1 1/1 1
/TT—i(}f'“b?) and Ji;_i(ﬁJrﬁ”’)'

The present author has investigated the effect
of K/Ko upon the truncation errors, with
particular reference to the maximum permissible
value of A¢. For the purpose of discussion, the
two integers m and p are defined again by
m(A€) = A and p(An) = Il. Further m'(A§) =
A, m"(AE) = A”,p'(An) = IT"and p”'(Ay) = II".

ILLUSTRATION CALCULATIONS

Case 1

A thermally unsymmetric case has been
considered with A’ =II' =6 and A" =IT" =
3-5 (K/Kp == 0-73). The computer simulation
reached equilibrium in 7 cycles from the starting
condition that the initial isothermal solid
temperature was 500°. The hot inlet gas tem-
perature was 1000° with the cold inlet gas
temperature 0°. In all cases p’ = 12, p”" = 6.

The exit gas temperature at the end of each
period in the equilibrium cycle is set out below
as calculated with different values of m (the
same for each period).

Final exit gas Final exit gas

temperature temperature
m
(cooling period) (heating period)
4 698-37 342-11
8 694-29 344-64
16 693-29 345-25
31 693-04 345-40
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This suggests m should be about 12 for an
accuracy of 0-5 degrees in the final exit gas
temperature. The harmonic mean reduced length
is 4421,

Case 2
A = 137875 A7 =7-4916
I = 60265 II" =3-2746 (K/Ko = 0-88)
f =24 p’ =12

15 cycles to equilibrium

Final exit gas Final exit gas

temperature temperature
m
{cooling period) (heating period)
4 642-46 35777
8 643-80 35823
16 644-14 35818
31 64422 358-16

Thus for an accuracy of 0-5 degrees, m should
be about 18. The harmonic mean reduced length
is 9-708.
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reduced length /1 as might be expected but more
particularly by the ratio K/Kj.

Reduced Hausen Number of steps for 0-5°
length factor accuracy
AT K/Ko m
4421 073 12
9-708 0-88 8
15-352 093 5

It must be stressed that these calculations refer
to the difference approximations described in
this paper. Where the difference approximation
is not as good then the number of steps for a
required accuracy will increase. On the other
hand, where a better approximation is employed,
this number of steps will decrease.

Employing this trapezoidal method of integra-
tion, the minimum number of time and length
steps required for the integration procedure to
calculate the final exit gas temperature to an
accuracy of 0-5° for the 0-1000° operating range
has been estimated for a fixed reduced length
A =10, equal for periods of both heating and
cooling, and for successive values of reduced
period 11, equal in both periods. These values of
IT correspond to successively decreasing values

Case 3 of K/Kp. It has been found in this particular
A =241702 A" = 112475 case that the required number of time steps and
IT = 48556 II" = 2:5537 (K/Ko = 0-93) number of length steps are nearly equal. The

04 " 12 minimum number of length steps, mmin, is
po= po= tabulated below.
Finalexit gas  Final exit gas Reduced length 4 = 10 (4" = A7)
m temperature temperature ngﬁii-m Reduced Hausen Thermal
X ; - . - period IT ratio ratio Mmin
(cooling period) (heating period)  brium (T = I} KIK, TREG
4 705-04 129-90 42 2 0970 0-8290 4
8 704-60 12804 4 38 0-903 0-8186 6
16 704-46 12821 45
5 0-845 0-8087 8
6 0794 0-7987 10
7 0-738 0-7867 12
It might be expected that for an accuracy of ;:g g:ggg g:;gf; }‘6*
0-5 degrees, m should be about 5. The harmonic 94 0598 07495 18

mean reduced length is 15-3516.

It seems evident from these results, as sum-
marized below, that the number of steps m
required for a sufficiently accurate representa-
tion by the equations is not defined solely by the

It is interesting to note that Buker and Simcic
[9] make reference to the fact that refined differ-
ence approximations to the differential equations
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are more important in the accurate representa-
tion of stove performance than the introduction
of refined thermal data to the model. In their
digital computer representation of the equations,
their value of m was 24. Such a high value can
only be explained by the fact they considered a
very wide range of flow rates for the stove and
that the higher flow rates result in values of
K/Ky as low as 0-75 with a large value for
reduced length A. Further, non-linearities in the
variation of temperature with respect to ¢ and =,
even at high values of K/Kjy, may be introduced
by the inclusion of a gas specific heat as a
function of gas temperature in the equations.
Such non-linearities would of course increase the
truncation errors and increase the minimum
number mmin required for accurate solution.

THE EFFECT OF NON-LINEAR VARIATIONS OF
TEMPERATURE UPON CLOSED METHODS OF
SOLUTION OF THE EQUATIONS

In the method presented by Nahavandi and
Weinstein, the solid temperatures 7°(¢') at the
end of heating period are related by an integral
equation to the unknown solid temperatures
at the end of the cooling period 77'(¢"'). Similarly
the solid temperatures at the end of the cooling
period are related to the unknown solid tempera-
tures at the end of the heating period. It is then
assumed that the unknown functions T7'(¢')
and 7"'(§¢"") can be represented by power series
expansions,

() = 3 an (@)

Ty — gbn &)

By considering truncated power series, up
to power N, 2N + 2 simultaneous integral
equations are solved for the coefficients ay, aj,
as ....any and bg, b1, be .... by. It is clear
that the lower the value of Hausen K/Ky factor
(and/or the greater the difference between
W’'S’P" and W”S"”P’), the more terms in the
power series expansions that need to be con-
sidered for accurate solution of the equations.
This leads to the question of whether, for low
values of K/Ko, the power series expansion is
better replaced by a more rapidly convergent
Chebyshev series, that is

1299
T'(¢) = % Cn Un (€)
T"(¢") = X dn Un(¢")
where Uy (x) is defined :)y
Uy (x) = cos (r cos™ x).

In this case it is very probable that the system
will be as accurately represented by a small
number of simultaneous integral equations.
Inspection of the analytical solution of equation
(4) at the entrance to the regenerator,

T =TO) e 7 + 1 (1 — e,

may suggest that a polynomial expansion might
be better replaced by a series of exponentials
for accurate solution of the equation by as few
as possible simultaneous integral equations for
low values of K/Kj.

CONCLUSIONS

The trapezoidal method of difference repre-
sentation has been applied to the hyperbolic
differential equations describing the temperature
behaviour of the thermal regenerator. This has
led to a simple and rapid numerical step-by-step
procedure to calculate the gas and mean solid
temperatures in a regenerator at equal intervals
of time at equally spaced heights in the regenera-
tor. This method has been programmed for the
Ferranti ‘“‘Pegasus” computer and has been
shown to yield the same solution to the equations
for the same given conditions as a different and
independent method of calculation, namely that
of Iliffe [5].

It has been demonstrated that the Hausen
factor K/Kj can be used to indicate the magnitude
of the truncation errors associated with the
difference representation for specified reduced
lengths A" and A" and reduced periods II’ and
IT”. The smaller the value of K/Kp, the more
steps m and p, in the distance and time directions
respectively, which are required for accurate
solution of the equations.

Finally, it is indicated in an appendix that
the method can be extended to include the
temperature dependence of the thermal pro-
perties of the chequer material and the gases,
and of the heat-transfer coefficients, together
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with the time dependence of the flow rate and
convective heat-transfer coefficients.
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APPENDIX
The numerical step-by-siep procedure de-
scribed here can be extended to include the time
variation of the heat-transfer coefficients and
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mass flow rate of the gas and the temperature
dependence of the thermal properties of the gas
and the material of the chequerwork and of the
heat-transfer coefficients. To illustrate this, the
temperature dependence of the gas specific heat
will be considered.

The specific heat of a gas can be expressed as
a function of gas temperature of the form

S(t) = a + bt + 2
where

S(t) = the specific heat of gas at temperature
¢ [Btu/Ib degF, cal/g degC);

t = gas temperature (°F, °C)

and a, b, ¢ are constants determined by the gas
composition.
The differential equations become
ot

hA
—<*W(a+bt+ct H-H(T — 1)

oy
eT  hA
26~ mc T
Set
_BA
Y= y
and
hA
"= acb

It should be noted that y has dimensions of
Btu/lb degF, cal/g degC. Then the above
equations become

ot . T—t
oy  a- bt et
and
or
P

Expressing these equations in difference form,

using the trapezoidal rule, we have

B Ay ([0t ot
trit, s = tr,S+'§ (5; ,s -+ By )rers

and

. ar) , ar)
r,s+1 = dr,s + 3 \an).s - Y

t—T.
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Upon substituting the functions ¢ and T for
the several derivatives, the equations become

Tr,s — tr,s
a-+ btr S + ol g
Trjl - tr+1,S }

a—+ btyr,s + 177 s

Ay
try1,5s = lr,8 + & { — +

and
Ty, 541 == BTrs-lr A (tr,s+1 + tr,5)
" 1 + B 1+8
where, as previously, B = § Ay.

In general, at any stage of the integration, the
values of T and ¢ will be known at the mesh
points (, S), (r+1, S) and (r, S+1). It is necessary
to calculate the values of T and ¢ at (r+1, S+1).
It is known that

_ Ay
tr+1,5+1 = tr,5+1 + 5 3), LSl +
r

ot )
> (10
(a')’)r S+1J ( )

ot
But ( involves Try1,s+1, not yet

0y/r+1,5+1
known.

However, upon the substitution of
Trs1,8+1 = 'BTr+1 s+
’ 1 + B

1%*/3 (tr+1,5+1 + tr41,9)

ot
into the term ( 6y) in the equation (10),

r+1,S+1
we obtain

1 —
Ir,541 — tr+1,5+1 + & {[(1 T g) Tr+1,5 +

lf_ﬁtr+ls+ 1 +Bfr+1 s+1]/

(a + btr+1,s+1 -+ Ctﬂ-zl,SJrl) + [Tr,S+1 -

tr,s+1]/ (@ + btr,s+1 + ct,;f.ﬂ)} =0.

This is a non-linear equation in t,+1,s+1 which
is written as
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g (tr+1,5+1) = 0.
This can be solved by the Newton method,
that is

t (n+1) =

r1,$41 s — 8 G se0/8 (0 s10)

where 1%, ¢, is the nth iterate of ty+1,5+1.

Having evaluated t;41,s+1 in this manner, it
follows that Tyi1,s+1 is calculated explicitly
using

1
1+2Tr+15+

Tri1,541 =

——(fr+1,841 + tr41,9).

The repeated solution of a non-linear equation,
g(tr+1,5+1) = 0, at each stage of the integration
may well render this method too time-consuming.
The use of Newton’s method of solving non-
linear equations to solve difference equations is
not unknown, but it may be preferable to use a
predictor-corrector method.

An example of a predictor formula is

~

ot
trs1,5+41 = tr—1,541 + 20y (8)/) o
r,

(mid-ordinate rule).

Using this predicted value of t41,541, the
derivative at (r+1, S+1) is explicitly evaluated,
and a corrected value of #,41,5+1 obtained using
again the trapezoidal rule, i.e.

AV
tr+1,841 = tr,s41 + - P +
Y /r,S+1

(at) ]
oy )ret,541)

employing Ty ,s+1 to form the first estimate of
(@t/oy)r+1,811.

Using this corrected value of fr41,s+1, the
derivative is re-evaluated at (41, S+1) and a
new corrected value of f#,11,5+1 obtained using
the trapezoidal rule. This process is iterated until
tr+1,5+1 COnverges.

Next, Ty41,5+1 must be computed using the
equation
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1— The solution of the non-linear equation g = 0

Traase1 = T+8 Tro1s + by Newton’s method and the application of a
8 Qredictor—corrector procedure both involve itera-

58 (tre1,5 -+ tre1,541)- tions. Future work may show that a combination

i , of these methods will minimize the necessary
This next new value of Ty41,s+1 Is used to re- computation and as a beginning it is suggested

. ot . that the value of ¢ redicted by the mid-
estimate |- and the procedure is iter- X r+1,8+1 P y the
(8y)r+1,s~:~1 p ordinate formula can be used as the first estimate

ated to convergence. in Newton’s iteration procedure.

Résumé—Beaucoup de travaux récents ont ét€ consacrés a la simulation des récupérateurs de chaleur, en
particulier, des fourneaux Cowper. Un procédé numérique pas-a-pas de résolution des équations
différentielles décrivant ’échangeur de chaleur par récupération est mis en route. Celui-ci utilise la
représentation des équations par des différences trapézoidales. Cette méthode a été programmée pour
un calculateur numérique et une comparaison a été faite avec une autre méthode indépendante du calcul.
Les deux techniques fournissent des solutions identiques des équations. 1! est nécessaire de décider du
nombre minimal de pas dans la variable spatiale que ['on a besoin d’incorporer dans la simulation par
le calculateur afin d’avoir une solution précise des équations, spécialement dans une représentation
analogique ou la longueur du pas ne peut pas étre facilement modifiée. Les facteurs gouvernant les
erreurs de troncature sont donc discutées et on montre que plus le facteur de Hausen K/Kp est grand,
plus le nombre de pas nécessaires pour une solution précise est faible.

Zusammenfassung—Die Simulation thermischer Regeneratoren, insbesondere von Cowper-Ofen,
wurde in letzter Zeit eingehend bearbeitet. Ein numerisches Schrittverfahren wurde zur Losung der
Differentialgleichungen der regenerativen Wiarmeiibertrager aufgestellt. Es benutzt die trapezférmige
Differenzdarstellung der Gleichungen. Diese Methode wurde fiir eine Digitalrechenmaschine pro-
grammiert und es wurde eine Vergleichsrechnung nach einer anderen, unabhingigen Methode
durchgefiihrt. Die beiden Rechenarten ergeben identische Losungen der Gleichungen. Esist erforderlich,
tiber die minimale Anzahl der Schritte fiir die Raumvariable zu entscheiden, da diese fiir die genane L6-
sung der Gleichungen in die Simulation durch die Rechenmaschine aufgenommen werden muss und
speziell bei Analogdarstellung die Schrittlinge nur schwer gedndert werden kann. Die Faktoren,
welche die Fehler durch Verkleinerung der Schrittzahl bestimmen, werden deshalb diskutiert und es
wird gezeigt, dass fiir die Losung umso weniger Schritte nétig sind, je grosser der Hausenfaktor
K/Kp ist.

AngoTanmst—MHOIMe 113 HETABHO 0Ty GINKOBAHHEIX PaboT MOCBALEHB MOeIUPOBAILUIO TeT-
JIOBEIX PEreHepaTOpOB, B UACTHOCTU, KaylepCcKuX mnedeit. Paspaloran vuciaeHHBIl MeTOX
MoCIeI0BATeNbHEX npubau:rennii TuA pernens pu@depeHINAILHBIX YPABHEHMUIT, OWHCHI-
BAIOMIUX pereHePaTUBHHIN TeriooOMeHHUK. B 9TOM MeTOe MCIONB3YeTCH Tpaleloufanbioe
PAsSHOCTHOE NPeACTaBIeHHe ypaBHenmlt. Meron Owim samporpamupomRan Jas  mudponoit
BRUMCAMTENHHON MANIHE, U OBLIO NPOBEJEHO CPABHEHHME C JAPYIHM HE3aBHCHMBIM METORA
pacuéra. HeofXoquMo penmTs BONPOC O MUHHMAILHOM HHCAE HIAr0B II0 HPOCTPAHCTBEHHOHR
TepeMennoil, KOTOPHE CIeRyeT HCMOIb30BaTh IPH MOGESINPOBAHNY BHYHCIUTEILHON MATIHHON
IIA TOYHOTO pellleHis YpaBHeHN, KOPHA JIMHY 1Ara HeIb3A Jerko uaMennts. [loatoMy pac-
CMATPUBATCS KODPPUIMEHTH, YINTHBAIOLME OUIMOKU BCIEACTBUEG OTOPACBHIBAHIIS YJICHOB.
IMokasano, uro 4em Goxbuie kosPduunent Xozena K/Ko, Tem Mernbille HYIKHO HIATOB LTA
TONYYEHUA TOYHOTO PenreHuA.



